指数函数公式
时间:2015-12-14 来源:未知 作者:实习编辑 点击:次
核心提示:指数函数公式课件中包括了数学术语、公式推导、函数图像、幂的比较、定义域、值域、化简技巧、对应关系、概念等等知识点,小编将一些知识点整理在这篇文章中,需要完整版的请点击下面的链接下载。 完整版指数函数公式 一、指数函数数学术语 指数函数是数学中
指数函数公式课件中包括了数学术语、公式推导、函数图像、幂的比较、定义域、值域、化简技巧、对应关系、概念等等知识点,小编将一些知识点整理在这篇文章中,需要完整版的请点击下面的链接下载。
一、指数函数——数学术语
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于 0 的时候y等于 1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于 0 的时候等于 1。在x处的切线的斜率等于此处y的值乘上lna。即由导数知识:
作为实数变量x的函数,
的图像总是正的(在x轴之上)并递增(从左向右看)。它永不触及x轴,尽管它可以任意程度的靠近它(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
有时,尤其是在科学中,术语指数函数更一般性的用于形如的指数函数
函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。本文最初集中于带有底数为欧拉数e 的指数函数。点击查看
指数函数练习题。
二、指数函数——概念
(1)指数函数的定义域为实数的集R,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为(0,+∞)。
(3)函数图形都是下凹的。[1]
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
三、指数函数——函数图像
(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)。
四、指数函数——幂的比较
比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。
(图为指数函数公式部分内容截图)

标签:
高一数学